

Math-Based Decisions in Air Traffic Control

Student Workbook A

- Introduction to Real Air Traffic Control
 - Units
 - Sector Display
 - Sector Information
 - Spacing Information

An Airspace Systems Program Product

Smart Skies™

LineUp With Math™ EG-2006-08-111-ARC

Understand Sector Information

Investigator:

Distance:

Understand Units

A Nautical Mile is a little longer than a statute mile.

Travel on land is measured in Statute Miles - commonly called "miles".

Travel in the air and on the sea is measured in **Nautical Miles (Nmiles)**. A nautical mile is a little *longer* than a statute mile.

1 nautical mile = 1.15 statute miles

Speed on land is measured in Miles per Hour (mph).

Speed in the air and on the sea is measured in Nautical Miles per Hour - commonly called "knots" (Kts).

1 "knot" = 1 nautical mile per hour

Just as a Nautical Mile is a little *longer* than a Statute Mile, 1 Knot (nautical mile per hour) is a little *faster* than I mile per hour.

Understand the Sector Display -

A **Sector** is the air space above a specific geographical section of the country.

Each sector has 2 air traffic controllers. They are responsible for the safe and efficient flight of all aircraft in that sector.

A sector is composed of many interconnected **Routes**. Routes are invisible pathways in the sky.

When you look at an air traffic problem display, you will see:

- > Lines to show the routes
- > Numbers at each 5 Nmile distance
- > Tick marks at each 1 Nmile distance

Continue to Next Page

Investigator:

Understand Sector Information (Continued)

- ^{II} Sector 33 is a real sector in northern California. But we've used different distances.
- ^m Sector 33 controllers merge traffic onto a single route at MOD.

It is important that you understand the distances between intersections.

	Circle the intersections	Where is MOD?			
$\binom{2}{2}$	What is the direct distance from:	MINAH	TPH	LIDAT	00
	To MOD?	Nmi	Nmi	Nmi	
	To OAL?	Nmi	Nmi	Nmi	
£	How far is it from MINA	H to OAL to MOD?			nautical miles.
£43	How far is it from MINA	H to MOD directly?		nautical miles.	
£3	How much shorter is it is rather than by way of O	•		nautical miles.	
£	How much further is it to rather than directly?	o go from LIDAT to N		nautical miles.	

Continue to Next Page

Investigator:

Understand Sector Information (Continued)

nformation for each plane, including its position, is shown on the sector display.

£7)	Circle the diamond for the Delta Airlines flight on t	he sector d	isplay.

What is the speed of the Delta Airlines flight?

A **Flight Plan** is a plane's route of travel from intersection to intersection, including speed (knots) and altitude. In our case, the altitude will be the same for all planes.

knots.

£ (1)	Locate flight AAL12 and write the intersections (in order) for its flight plan to San Francisco (SFO):								
	To:		Then to:		Then to:				
£ 10 }	What is the length of the flight route of AAL12 from its current position to MOD?							Nmiles	
£ 11)	What	is the length of th	ne fliaht route	of LIAL 23 from it	s current position	to MOD2		Nmiles	

Understand Airplane Spacing Requirements

Investigator:

The **Objective** of air traffic control is to **safely** and **efficiently** move planes to their destinations.

Safety - Minimum Separation

To be **safe**, planes must **always** be kept far enough apart that collisions and near-misses **NEVER** happen.

The Federal Aviation Administration has established the least distance allowed between planes. This is called the Minimum Separation.

You will use

Minimum Separation = 2 Nmiles

- On air traffic control displays, this minimum separation is shown by a "safety circle" around the plane symbol. The circle radius is 1 Nmile.
- When two circles just touch, the distance between the planes is 1 Nmi + 1 Nmi = 2 Nmi, the minimum separation.

Efficiency - Ideal Spacing

- At SFO, planes arrive from Sector 33 and from other sectors.
 So, at MOD the Sector 33 controllers must leave more than 2 Nmi to let planes from other sectors merge after MOD.
- This greater spacing is referred to as Ideal Spacing.

Ideal Spacing at MOD = 3 Nmiles

You must aim for Ideal Spacing at MOD.Everywhere else you need at least Minimum Separation.

Smart Skies™

Continue to Next Page

Investigator:

Understand Airplane Spacing Requirements (Continued)

UAL74 is **following** AAL12 to SFO. On the route, draw a diamond to show UAL74 at the Minimum Separation.

Draw a "safety circle" around the diamond for UAL74.

DAL88 is **ahead** of AAL12 to SFO. On the route, draw a diamond and a safety circle to show DAL88 at the <u>ldeal</u> Spacing.

to SFO

7 In each diagram, check all boxes that are **true**.

MOD